Products
Home /OPTICS /

Polarization Optics

/Non-Polarizing Cube Beamsplitters

Non-Polarizing Cube Beamsplitters

Non-Polarizing Cube Beamsplitters also called NPBS Cube is a more sophisticated type consisting of two right- angle prisms cemented together at their hypotenuse faces.The cemented face of one prism is coated. Before cementing, with a metallic or dielectric layer having the desired reflecting properties, both in the percentage of reflection and the desired color. The absorption loss to the coating is minimal and transmission and reflection could be designed to 10%, 20%, 30%, 40%, 50%, etc.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    5-6weeks
Share To : f t y b l ins
  • Product Detail

2.1、What is a Non-Polarizing Beamsplitter Cubes?

Non-polarizing Beamsplitter Cube consists of a pair of precision high tolerance right angle prisms cemented together with a metallic-dielectric coating on the hypotenuse of one of the prisms. The low polarization dependence of the metallic-dielectric coating allows the transmission and reflection for S- and P- polarization states to be within 5% of each other. This means that they will not change the state of polarization of the incident beam. We offer both broadband and single wavelength non-polarizing cube beamsplitters (NPBS). An antireflective coating has been applied to each face of the beamsplitter in order to produce maximum transmission efficiency for the appropriate wavelength range.


2.2、How does a Non-polarizing beamsplitter Cube work?

These cubes split the energy with minimal polarization sensitivity. The polarization states are about the same for the entrance and exit beams. Broadband Non-Polarizing Beamsplitter Cube’s hybrid coating has certain absorption but minimal polarization sensitivity. Due to the metallic nature of the hybrid coating, those cubes are not intended for use with high power lasers.


2.3.Specifications:

Material:

N-BK7 Grade A Optical Glass

Diameter Tolerance:

+/-0.1mm

Flatness:

λ/4@633nm

Beam deviation:

3 arc min

Surface Quality:

60-40

Front surface (S1):

Partial reflective coating

Back surface (S2):

AR coating

Clear aperture:

>90%

Standard Coating:

T/R=50/50±5%, for random polarization ;

T=(Ts+Tp)/2,R=(Rs+Rp)/2

Note: Other sizes, split ratio and coating are available upon request.



Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Polarizing Beamsplitter Cubes Mounted And Unmounted |
Polarizing Beamsplitter Cubes Mounted And Unmounted

Polarization Beamsplitter Cubes are constructed by cemented two right angle prisms, the hypotenuse of one prism is coated with polarization dielectric coating. When used with normal incident, un-polarized light, the incident beam is separated into two polarized beams, p-polarized component is passed straight through, s-polarized component is reflected out at 90deg.

Read More
Polarization Beamsplitter Cubes
Broadband Polarizing Cube Beamsplitters

Beamsplitter Cubes are constructed by cemented two right angle prisms.  The hypotenuse of one prism is coated with polarization dielectric coating.

Read More
Elliptical Plate Beamsplitters
Visible And NIR Plate Beamsplitters

Our beamsplitter plates can be used in high power laser system. When using beamsplitter plates, it is important to make it in mind that the two partial beams travel in different optical paths. The optical paths depend on the incident angle and the thickness of plates.

Read More
Polarizing Beamsplitter Cubes Mounted And Unmounted |
Polarizing Beamsplitter Cubes Mounted And Unmounted

Polarization Beamsplitter Cubes are constructed by cemented two right angle prisms, the hypotenuse of one prism is coated with polarization dielectric coating. When used with normal incident, un-polarized light, the incident beam is separated into two polarized beams, p-polarized component is passed straight through, s-polarized component is reflected out at 90deg.

Read More
Cr4+:YAG passive q-switch
Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

Read More
High Quality Anamorphic Prism
High performance N-BK7 Anamorphic Prism

The Anamorphic prisms are used in pairs to magnify input beam size along one axis while leaving the other axis unchanged. The elliptical laser diode beams can be transferred into nearly circular.

Read More
high laser induced damage threshold Er:Yb:glass
Er:Yb:glass crystal Erbium and ytterbium co-doped phosphate glass

Er3+, Yb3+ co-doped phosphate glass is a well-known and commonly used active medium for lasers emitting in the “eye-safe” spectral range of 1,5-1,6 µm. As an eye-safe wavelength laser, 1540um ,Er3+/Yb3+ co-doped phosphate glass lasers have attracted much attention for their compactness and low cost, such as laser generation and signal amplification because the wavelength of 1540nm is just at the position of the eye-safe and the fiber optic communication window. 1540nm lasers have used in ranging finder, radar, target recognition. Er3+/Yb3+ co-doped phosphate glass cooperate with passive Q-Switch crystal cospinel can get 1540nm pulse solid-state laser.

Read More
Diode pumped picosecond Pr:YLF laser crystals
Pr:YLF crystals Protactinium doped Yttrium Lithium Fluoride

HGO grows Pr:YLF laser crystals using Czochralski technology. Pr3+:YLF has been found as promising laser material for producing visible lasers directly and UV lasers through intracavity second-harmonic generation. Very few laser materials have the necessary properties for the realization of lasing in the visible spectral range. Trivalent praseodymium (Pr3+) is known to be an interesting laser ion for use with solid-state lasers in the visible spectral range because of its energy levels scheme, providing several transitions in the red (640 nm, 3P0 to 3F2), orange (607 nm, 3P0 to 3H6), green (523 nm, 3P0 to 3H5), and dark red (720 nm, 3P0 3F3+3F4) spectral regions.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact