Products
Home /OPTICS /

Waveplate

/Waveplate

Waveplate

Waveplates (retardation plates or phase shifters) are made from materials which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent material varies inversely with their refractive indices. This difference in velocities gives rise to a phase difference when the two beams recombine.

  • Product Origin:

    China
  • Order(MOQ):

    10
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

Half Waveplate

A half waveplate rotates linearly polarized light to any desired orientation. The rotation angle is twice the angle between the incident polarized light and the optical axis. Therefore, the half waveplate can be used as a continuously adjustable polarization rotator. The half waveplate is used to rotate the plane of polarization, electro-optic modulation and as a variable ratio beamsplitter when used in conjunction with a polarization cube.


Quarter Waveplate

When linearly polarized light is input at 45deg to the axis of a quarter waveplate, the output is circularly polarized, similarly, input circularly polarized light is transformed into linearly polarized light. The quarter waveplate is used in creating circular polarization from linear or linear polarization from circular, ellipsometry, optical pumping, suppressing unwanted reflection and optical isolation.


Types of Waveplate

Type

 

Feature

Zero Order

Cemented

Cemented by glue;Better Temperature Bandwidth;Wide Wavelength Bandwidth;Moderate damage threshold

Optical Contacted

No glue;Better Temperature Bandwidth;Wide Wavelength Bandwidth;Better damage threshold;Good wavefront and parallelism

Air Spaced

No glue, Mounted;Better Temperature Bandwidth;Wide Wavelength Bandwidth;High damage threshold

True Zero Order

Cemented

Cemented by glue;Better Temperature Bandwidth;Wide Wavelength Bandwidth;Moderate damage threshold;Excellent retardation performance

Single Plate

Single plate;Better Temperature Bandwidth;Wide Wavelength Bandwidth;High damage threshold;Only 1310nm, 1550nm available

Multi Order

Low Temperature Bandwidth;Low Wavelength Bandwidth;High damage threshold;Low cost

Dual Wavelength

Provide Specific Retardance At Two Different Wavelengths

Achromatic

Better Temperature Bandwidth;Very broad Wavelength Bandwidth;Cemented and air spaced available

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Subject : Waveplate
Related Products
Laser Line Right Angle Prisms
Laser Grade Prisms

Prisms are transparent optical devices which refract or reflect light. They have manifold applications in laser technology.

Read More
Ti:sapphire laser crystals
Ti:Sapphire Crystal Titanium Doped Sapphire

Ti:Sapphire crystal is the most widely used tunable solid-state laser material combining the supreme physical and optical properties with the extremely broad lasing range. Its lasing bandwidth can support pulses < 10fs making it the crystal of choice for femtosecond mode-locked oscillators and amplifiers. The absorption band of Ti:Sapphire centers at ~ 490 nm so it may be conveniently pumped by various laser sources such as argon ion lasers or frequency doubled Nd:YAG, Nd:YLF, Nd:YVO4 lasers at ~530nm. Laser designers are using Ti:sapphire to generate femtosecond pulses to create new industrial tools. A properly delivered femtosecond laser pulse interacts within the target leaving the surrounding area undisturbed. Newly developed femtosecond pulsed lasers micro-machine complex fine structures in glass, metal and other materials. Active waveguides can be written below the surface, integrating optical devices within the body of a substrate. Defects in photomasks can be repaired without disturbing neighbouring patterns. And it is now possible to achieve cellular resolution in vivo for medical diagnosis with femtosecond pulse lasers.

Read More
Uncoated N-Bk7 High Precision Optical Windows
AR Coated BK7 Windows

BK7 window is the most common type of window. It has good performance over visible and near infrared wavelength regions. At the same time, BK7 window is ideal for applications require minimal transmitted beam deviation. It is suitable for AR coating.

Read More
China Zinc Selenide (ZnSe)
IR Windows Zinc Selenide(ZnSe) Windows

ZnSe is used widely for IR components, windows and lenses, and applied for Thermal Imaging, FLIR,  Medical systems and Co2 Laser Zinc Selenide (ZnSe) Windows are ideal for a wide variety of infrared applications including thermal imaging, FLIR, and medical systems.

Read More
High purity Nd:YVO4 laser crystals
Nd:YVO4 Neodymium Doped Yttrium Orthovanadate laser crystals

Nd:YVO4 (Neodymium Doped Yttrium Orthovanadate) crystals is one of the most promising commercially available diode pumped solid state laser materials, especially, for low to middle power density. This is mainly for its higher absorption and emission features than Nd:YAG crystal. Pumped by laser diodes, Nd:YVO4 crystal has been incorporated with high NLO coefficient crystals ( LBO, BBO, or KTP) to frequency-shift the output from the near infrared to green, blue, or even UV. This incorporation to construct all solid state lasers is an ideal laser tool that can cover the most widespread applications of lasers, including machining, material processing, spectroscopy, wafer inspection, light displays, medical diagnostics, laser printing, and data storage, etc. It has been shown that Nd:YVO4 based diode pumped solid state lasers are rapidly occupying the markets traditionally dominated by water-cooled ion lasers and lamp-pumped lasers, especially when compact design and single-longitudinal-mode outputs are required.

Read More
LiNbO3 LN nonlinear crystal
LiNbO3 crystal Lithium niobate

LiNbO3 is widely used as electro-optic modulators and Q-switches for Nd:YAG, Nd:YLF and Ti:Sapphire lasers as well as modulators for fiber optics.

Read More
HoYLF laser crystal
Ho:YLF crystal Holmium-doped Yttrium Lithium Fluoride

HGO grows Ho:YLF laser crystals using Czochralski technology. Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping. The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated.

Read More
AR Coated Negative Achromatic Lens
Broadband AR Coated Achromatic Lenses(Doublet Lenses)

Achromatic Lenses are used to minimize or eliminate chromatic aberration. The achromatic design also helps minimize spherical aberrations. Achromatic Lenses are ideal for a range of applications, including fluorescence microscopy, image relay, inspection, or spectroscopy. Achromatic Lenses, which are often designed by either cementing two elements together or mounting the two elements in a housing, create smaller spot sizes than comparable singlet lenses.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact