Products
Home /OPTICS /

Waveplate

/Waveplate

Waveplate

Waveplates (retardation plates or phase shifters) are made from materials which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent material varies inversely with their refractive indices. This difference in velocities gives rise to a phase difference when the two beams recombine.

  • Product Origin:

    China
  • Order(MOQ):

    10
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

Half Waveplate

A half waveplate rotates linearly polarized light to any desired orientation. The rotation angle is twice the angle between the incident polarized light and the optical axis. Therefore, the half waveplate can be used as a continuously adjustable polarization rotator. The half waveplate is used to rotate the plane of polarization, electro-optic modulation and as a variable ratio beamsplitter when used in conjunction with a polarization cube.


Quarter Waveplate

When linearly polarized light is input at 45deg to the axis of a quarter waveplate, the output is circularly polarized, similarly, input circularly polarized light is transformed into linearly polarized light. The quarter waveplate is used in creating circular polarization from linear or linear polarization from circular, ellipsometry, optical pumping, suppressing unwanted reflection and optical isolation.


Types of Waveplate

Type

 

Feature

Zero Order

Cemented

Cemented by glue;Better Temperature Bandwidth;Wide Wavelength Bandwidth;Moderate damage threshold

Optical Contacted

No glue;Better Temperature Bandwidth;Wide Wavelength Bandwidth;Better damage threshold;Good wavefront and parallelism

Air Spaced

No glue, Mounted;Better Temperature Bandwidth;Wide Wavelength Bandwidth;High damage threshold

True Zero Order

Cemented

Cemented by glue;Better Temperature Bandwidth;Wide Wavelength Bandwidth;Moderate damage threshold;Excellent retardation performance

Single Plate

Single plate;Better Temperature Bandwidth;Wide Wavelength Bandwidth;High damage threshold;Only 1310nm, 1550nm available

Multi Order

Low Temperature Bandwidth;Low Wavelength Bandwidth;High damage threshold;Low cost

Dual Wavelength

Provide Specific Retardance At Two Different Wavelengths

Achromatic

Better Temperature Bandwidth;Very broad Wavelength Bandwidth;Cemented and air spaced available

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Subject : Waveplate
Related Products
Pure YVO4 Yttrium Orthovanadate crystals
YVO4 crystal Yttrium Orthovanadate

The Yttrium Orthovanadate (YVO4) is a positive uniaxial crystal grown with Czochralski method. It has good temperature stability and physical and mechanical properties. It is ideal for optical polarizing components because of its wide transparency range and large birefringence. It is an excellent synthetic substitute for Calcite (CaCO3) and Rutile (TiO2) crystals in many applications including fiber optic isolators and circulators, interleavers, beam displacers and other polarizing optics.

Read More
Diode pumped picosecond Pr:YLF laser crystals
Pr:YLF crystals Protactinium doped Yttrium Lithium Fluoride

HGO grows Pr:YLF laser crystals using Czochralski technology. Pr3+:YLF has been found as promising laser material for producing visible lasers directly and UV lasers through intracavity second-harmonic generation. Very few laser materials have the necessary properties for the realization of lasing in the visible spectral range. Trivalent praseodymium (Pr3+) is known to be an interesting laser ion for use with solid-state lasers in the visible spectral range because of its energy levels scheme, providing several transitions in the red (640 nm, 3P0 to 3F2), orange (607 nm, 3P0 to 3H6), green (523 nm, 3P0 to 3H5), and dark red (720 nm, 3P0 3F3+3F4) spectral regions.

Read More
Nd:GdVO4 laser host crystals
Nd:GdVO4 Crystal Neodymium Doped Gadolinium Orthovanadate

Nd:GdVO4, is a promising material for diode pumped lasers. Similar to the more well-known Nd:YVO4 crystal, Nd:GdVO4 crystal also exhibits high gain, low threshold, and high absorption coefficients at pumping wavelengths. Nd:GdVO4 has the additional advantage over Nd:YVO4 of a much higher thermal conductivity. For CW lasing at 1.06 um and 1.34 um and intracavity doubling with KTP and LBO, the gadolinium vanadate have produced a higher slope efficiency or optical conversion than Nd:YVO4.

Read More
Co2+:MgAl2O4  Cospinel Q-switch
Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel

Co2+:MgAl2O4 Cospinel is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 μm, in particular, for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths. Spinel is a hard, stable crystal that polishes well. Cobalt substitutes readily for magnesium in the Spinel host without the need for additional charge compensation ions. High absorption cross section (3.5×10-19 cm2) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10.

Read More
Lithium Triborate (LiB3O5 or LBO Crystal)
LBO Nonlinear Optical crystal Lithium Triborate Crystal

HGO grows LBO Nonlinear crystals using flux technology. LBO crystals is an excellent nonlinear crystal.For frequency doubling(SHG),tripling(THG) of Nd:YAG,Nd:YLF,Nd:YVO4 lasers, it is one of the most useful nonlinear optical materials in ultraviolet and visible laser applications.

Read More
IR Windows Silicon Windows
Silicon Windows

Silicon is used as an optical window primarily in the 3 to 5 micron band and as a subsrate for production of optical filters and windows. Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns. To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.

Read More
 High Precision Optical Glass Penta Prisms
UV Fused Silica Penta Prisms

Penta Prisms are used to define right angles in optical systems. Penta Prisms, which provide right handed images,feature a ray deviation of 90°. Penta Prisms are five-sided prisms are unaffected by slight movements. HG OPTRONICS offers a variety of Penta Prisms for optimal performance in the Ultraviolet (UV), Visible, or Infrared (IR) spectrums.

Read More
DLC Coated Germanium Windows
IR Windows Germanium Windows

Germanium (Ge) is the preferred lens and window material for high performance infrared imaging systems in the 8–12 um wavelength band.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact