Products
Home /OPTICS /

Laser Optics

/High Power Laser Line Windows

High Power Laser Line Windows

Laser Protect Windows(Laser protective glass, protective filters or welding protective windows) are used to save for the high cost of laser optics.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    5-6weeks
Share To : f t y b l ins
  • Product Detail

4.1、What are laser windows used for?

These windows are normally used in applications like laser cutting, laser welding machine, they are used for avoiding the high-precision laser optics damage by material splashes.


4.2、The key features of HG OPTRONICS Laser Windows

High Transmission

High Damage Threshold

Low Scatter

Low Absorption

Excellent Film Density

Excellent Environmental Stability


4.3. Typical Specifications:

Material:

BK7, Fused Silica, ZnSe...etc

Dimension:

4mm-120mm(Right Angle Side)

Surface Flatness

Lambda/10@632.8nm

Parallelism:

30″

Surface Quality:

10-5

Roughness:

3A



Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
C-Lens
Laser Optics

C-lens are specifically designed for fiber optics applications such as collimator, isolator, switch, collimator array and laser assembly. Compare to other gradient index lens, C-lens have several advantages including low cost, low insertion loss in long working distance, and wide working distance range. With our experienced optical design engineers, HG OPTRONICS can also provide custom designed C-lens per customer's requirement.

Read More
Laser Line Right Angle Prisms
Laser Grade Prisms

Prisms are transparent optical devices which refract or reflect light. They have manifold applications in laser technology.

Read More
Fiber Laser Protective Lens Machine Scanning
Laser Beam Collimation Lens

Laser Lenses are used to focus collimated light from laser beams in a variety of laser applications. Laser Lenses include a range of lens types including HGQ Lenses, Cylinder Lenses, or Laser Generator Lenses. Laser Lenseare designed to focus light in several different ways depending on the lens type, such as focusing down to a point,a line, or a ring. Many different lens types are available in a range of wavelengths.

Read More
Precision Broadband Laser Mirrors
Laser Grade Line Mirrors

Laser mirrors are fabricated with specialized coatings, which will offer high damage thresholds.

Read More
Elliptical Plate Beamsplitters
Visible And NIR Plate Beamsplitters

Our beamsplitter plates can be used in high power laser system. When using beamsplitter plates, it is important to make it in mind that the two partial beams travel in different optical paths. The optical paths depend on the incident angle and the thickness of plates.

Read More
UV Fused Silica Corner Cube Retroreflectors
UV Fused Silica Corner Cube Retroreflectors Prisms

Corner Cube Prism also called Retroreflector.It has three mutually perpendicular surfaces and a hypotenuse face. Light entering through the hypotenuse is reflected by each of the three surfaces in turn and will emerge through the hypotenuse face parallel to the entering beam regardless of the orientation of the incident beam. For its special performance, it is often used to the distance measurement, optical signal process and laser.

Read More
Laser Grade Meniscus Lenses
Positive Meniscus Lenses And Negative Meniscus Lenses

The Positive Meniscus Lenses are a convex-concave lens, but it is thicker at the center than at the edges. They are felt polished and are used universally in the ophthalmic industry where convention dictates that lens power be specified in Diopters. The Negative Meniscus Lenses are a convex-concave lens, but it is thinner at the center than at the edges. Otherwise description is similar to Plano Concave lenses.

Read More
IR Windows Silicon Windows
Silicon Windows

Silicon is used as an optical window primarily in the 3 to 5 micron band and as a subsrate for production of optical filters and windows. Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns. To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact