Products
Home /OPTICS /

Optical Mirrors

/High Reflective Broadband Dichroic Mirrors

High Reflective Broadband Dichroic Mirrors

The dichroic mirror is a mirror with significantly different reflection or transmission properties at two different wavelengths, it’s characterized by almost complete transmission of light at certain wavelengths and almost complete reflection of light at other wavelengths. It can be widely used in Laser technology applications.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

2.1、What is Dichroic Mirrors?

The dichroic mirror is a mirror with significantly different reflection or transmission properties at two different wavelengths, it’s characterized by almost complete transmission of light at certain wavelengths and almost complete reflection of light at other wavelengths. It can be widely used in Laser technology applications.


2.2、What are the features of Dichroic Mirror offered by HG OPTRONICS?

HG OPTRONICS customizes the Dichroic Mirror with the following features:

1):High reflectivity

2):High damage threshold

3):Long life-time


2.3、What HG OPTRONICS can do for you?

Substrate Materials:

N-BK7, Fused silica, Pyrex

Dimensional tolerance:

+/-0.1mm

Surface quality:

20-10

Parallelism:

1’

Flatness:

λ/8 per 25mm@633nm

Bevel:

Protective

One surface:

Laser grade Polished and HR coating

The other surface:

Fine ground

Angle of incident:

0°or 45°


Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
High Reflectivity Laser Mirror
800nm Highly Dispersive Ultrafast Mirrors

Laser Line Mirrors are used for beam-steering in demanding laser applications. Laser Line Mirrors are Optical Mirrors that have been designed for specific laser types or wavelengths.

Read More
Protected Aluminum Metallic Coated Mirror
Protected Gold Metallic Coated Mirror

HG Optronics.,INC. can provide Metal Coated Mirror,Dielectric Coated Mirror and Dichroic Mirror which are made of substrate such as BK7, Optical glass, Fused Silica, CaF2 and so on.

Read More
China IR Windows Calcium Fluoride CaF2 Windows Suppliers
IR Windows Calcium Fluoride CaF2 Windows

Calcium Fluoride windows and lenses for UV and IR spectrum. Custom made CaF2 windows, CaF2 lenses and wedges according to customer's specifications. CaF2 windows up to 220mm diameter; CaF2 wedges, prisms and CaF2 mirrors; Excimer CaF2 optics, Raman grade CaF2 optics and etc.

Read More
IR Windows Silicon Windows
Silicon Windows

Silicon is used as an optical window primarily in the 3 to 5 micron band and as a subsrate for production of optical filters and windows. Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns. To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.

Read More
NdYAG Crystal for solid-state laser
Nd:YAG crystals Neodymium Doped Yttrium Aluminum Garnet

Nd:YAG is the earliest and most famous laser host crystal. Since it combines great advantages in many basic properties,Nd:YAG is the ubiquitous presence for near-infrared solid-state lasers and their frequency-doubler, tripler, and higher order multiplier. It is widely used in industrial, medical, military and scientific fields.. Nd:YAG crystals are wildly used in all types of solid-state laser systems-frequency-doubled continuous wave, high-energy Q-switched, and so forth.Its good fluorescent lifetime thermal conductivity and physical strengths makes it suitable for high power lamp pumped laser.

Read More
TmYLF laser crystal
Tm:YLF crystal Thulium-doped Yttrium Lithium Fluoride

HGO grows Tm:YLF laser crystals using Czochralski technology. Tm:YLF is an important middle infrared laser crystal. Because Tm:YLF is negative uniaxial crystal, whose thermal refractive index coefficient is negative, some thermal distortion may be counteracted and high-quality light can be output. Conveniently pumped at 792nm, 1.9μm linearly polarized beam is output in a axis, and non-linearly polarized beam is output in c axis. The YLF crystals has low non-linear refraction index value and thermo optical constants, which makes these crystals applicable in research, development, education, production, photonics, optic, laser technology and telecommunications. Besides, Tm3+:YLF lasers are ideal pump sources for 2.1 μm Ho3+:YAG lasers. This is due to a good overlap of Tm3+:YLF emission and Ho3+:YAG absorption spectra and the capacity of producing linearly polarized output. What is more, the refractive index of Tm3+:YLF decreases with temperature, leading to a negative thermal lens that is partly compensated by a positive lens effect due to end face bulging.

Read More
high laser induced damage threshold Er:Yb:glass
Er:Yb:glass crystal Erbium and ytterbium co-doped phosphate glass

Er3+, Yb3+ co-doped phosphate glass is a well-known and commonly used active medium for lasers emitting in the “eye-safe” spectral range of 1,5-1,6 µm. As an eye-safe wavelength laser, 1540um ,Er3+/Yb3+ co-doped phosphate glass lasers have attracted much attention for their compactness and low cost, such as laser generation and signal amplification because the wavelength of 1540nm is just at the position of the eye-safe and the fiber optic communication window. 1540nm lasers have used in ranging finder, radar, target recognition. Er3+/Yb3+ co-doped phosphate glass cooperate with passive Q-Switch crystal cospinel can get 1540nm pulse solid-state laser.

Read More
Commercial Grade Wedge Prisms
N-BK7 and Fused Silica Wedge Prisms

Wedge prism is an optical element with plane-inclined surfaces, usually the faces are inclined toward one another at a very small angles.  It diverts light toward its thicker portion.  Wedge prisms can be used as isolating components. Wedges may also be used to produce a small deviation which doesnt allow return to source.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact