Products
Home /OPTICS /

Optical Mirrors

/Protected Gold Metallic Coated Mirror

Protected Gold Metallic Coated Mirror

HG Optronics.,INC. can provide Metal Coated Mirror,Dielectric Coated Mirror and Dichroic Mirror which are made of substrate such as BK7, Optical glass, Fused Silica, CaF2 and so on.


  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

1.1. What Metallic Coated types can HG OPTRONICS supply?

HG OPTRONICS mainly offers four coating types, including:

1) UV Enhanced Aluminum : Ravg > 85% from 200nm to 400nm

2) Protected Aluminum: Ravg > 88% from 400nm to 800nm

3) Protected Silver: Ravg > 90% from 400nm to 2500nm

4) Protected Gold: Ravg > 95% from 650nm to 2000nm


1.2. What are the features of Metallic coated mirror?

Metallic coated mirror have many key features below: Wide spectral range Not sensitive to the incidence angle and polarization state Low cost Non-durable Relatively low reflectance Low laser damage threshold


1.3. What  HG OPTRONICS can do for you?

Common Specifications:

Substrate Materials: N-BK7, Fused silica, Pyrex;Float glass

Dimensional tolerance:

+/-0.1mm

Surface quality:  

60-40

Parallelism:  

3’

Flatness:

λ/4 per 25mm@633nm

Bevel:

Protective One

surface:

Polished and Metallic coating

The other surface:

Fine ground


1.4. Note:

Aluminum is the most widely used metal reflection film, from near UV to near IR, have high reflectivity, and with low cost. Silver has higher reflectivity in the visible and near infrared wavelength than the aluminum film, but the silver in the air will be rapid oxidation, color darkening, makes the film performance and firmness declined rapidly. Gold film has a good consistency with high reflectivity in the near, middle and far infrared range, can control the thermal radiation effectively, but it is relatively soft, easy bruising, and should be paid very close attention to clean, and the cost is very high.





Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
High Reflectivity Laser Mirror
800nm Highly Dispersive Ultrafast Mirrors

Laser Line Mirrors are used for beam-steering in demanding laser applications. Laser Line Mirrors are Optical Mirrors that have been designed for specific laser types or wavelengths.

Read More
High Reflective Dichroic Mirror
High Reflective Broadband Dichroic Mirrors

The dichroic mirror is a mirror with significantly different reflection or transmission properties at two different wavelengths, it’s characterized by almost complete transmission of light at certain wavelengths and almost complete reflection of light at other wavelengths. It can be widely used in Laser technology applications.

Read More
Nd:GdVO4 laser host crystals
Nd:GdVO4 Crystal Neodymium Doped Gadolinium Orthovanadate

Nd:GdVO4, is a promising material for diode pumped lasers. Similar to the more well-known Nd:YVO4 crystal, Nd:GdVO4 crystal also exhibits high gain, low threshold, and high absorption coefficients at pumping wavelengths. Nd:GdVO4 has the additional advantage over Nd:YVO4 of a much higher thermal conductivity. For CW lasing at 1.06 um and 1.34 um and intracavity doubling with KTP and LBO, the gadolinium vanadate have produced a higher slope efficiency or optical conversion than Nd:YVO4.

Read More
High purity Nd:YVO4 laser crystals
Nd:YVO4 Neodymium Doped Yttrium Orthovanadate laser crystals

Nd:YVO4 (Neodymium Doped Yttrium Orthovanadate) crystals is one of the most promising commercially available diode pumped solid state laser materials, especially, for low to middle power density. This is mainly for its higher absorption and emission features than Nd:YAG crystal. Pumped by laser diodes, Nd:YVO4 crystal has been incorporated with high NLO coefficient crystals ( LBO, BBO, or KTP) to frequency-shift the output from the near infrared to green, blue, or even UV. This incorporation to construct all solid state lasers is an ideal laser tool that can cover the most widespread applications of lasers, including machining, material processing, spectroscopy, wafer inspection, light displays, medical diagnostics, laser printing, and data storage, etc. It has been shown that Nd:YVO4 based diode pumped solid state lasers are rapidly occupying the markets traditionally dominated by water-cooled ion lasers and lamp-pumped lasers, especially when compact design and single-longitudinal-mode outputs are required.

Read More
High Quality Anamorphic Prism
High performance N-BK7 Anamorphic Prism

The Anamorphic prisms are used in pairs to magnify input beam size along one axis while leaving the other axis unchanged. The elliptical laser diode beams can be transferred into nearly circular.

Read More
Ultra Narrow Bandpass Filter
IR Cut Bandpass Antireflection Coating Filter

A band pass filter is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range, and it’s used to selectively transmit a portion of the spectrum while rejecting all other wavelengths.

Read More
Laser Line Right Angle Prisms
Laser Grade Prisms

Prisms are transparent optical devices which refract or reflect light. They have manifold applications in laser technology.

Read More
Ti:sapphire laser crystals
Ti:Sapphire Crystal Titanium Doped Sapphire

Ti:Sapphire crystal is the most widely used tunable solid-state laser material combining the supreme physical and optical properties with the extremely broad lasing range. Its lasing bandwidth can support pulses < 10fs making it the crystal of choice for femtosecond mode-locked oscillators and amplifiers. The absorption band of Ti:Sapphire centers at ~ 490 nm so it may be conveniently pumped by various laser sources such as argon ion lasers or frequency doubled Nd:YAG, Nd:YLF, Nd:YVO4 lasers at ~530nm. Laser designers are using Ti:sapphire to generate femtosecond pulses to create new industrial tools. A properly delivered femtosecond laser pulse interacts within the target leaving the surrounding area undisturbed. Newly developed femtosecond pulsed lasers micro-machine complex fine structures in glass, metal and other materials. Active waveguides can be written below the surface, integrating optical devices within the body of a substrate. Defects in photomasks can be repaired without disturbing neighbouring patterns. And it is now possible to achieve cellular resolution in vivo for medical diagnosis with femtosecond pulse lasers.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact