Products
Home /OPTICS /

Optical Mirrors

/Protected Gold Metallic Coated Mirror

Protected Gold Metallic Coated Mirror

HG Optronics.,INC. can provide Metal Coated Mirror,Dielectric Coated Mirror and Dichroic Mirror which are made of substrate such as BK7, Optical glass, Fused Silica, CaF2 and so on.


  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

1.1. What Metallic Coated types can HG OPTRONICS supply?

HG OPTRONICS mainly offers four coating types, including:

1) UV Enhanced Aluminum : Ravg > 85% from 200nm to 400nm

2) Protected Aluminum: Ravg > 88% from 400nm to 800nm

3) Protected Silver: Ravg > 90% from 400nm to 2500nm

4) Protected Gold: Ravg > 95% from 650nm to 2000nm


1.2. What are the features of Metallic coated mirror?

Metallic coated mirror have many key features below: Wide spectral range Not sensitive to the incidence angle and polarization state Low cost Non-durable Relatively low reflectance Low laser damage threshold


1.3. What  HG OPTRONICS can do for you?

Common Specifications:

Substrate Materials: N-BK7, Fused silica, Pyrex;Float glass

Dimensional tolerance:

+/-0.1mm

Surface quality:  

60-40

Parallelism:  

3’

Flatness:

λ/4 per 25mm@633nm

Bevel:

Protective One

surface:

Polished and Metallic coating

The other surface:

Fine ground


1.4. Note:

Aluminum is the most widely used metal reflection film, from near UV to near IR, have high reflectivity, and with low cost. Silver has higher reflectivity in the visible and near infrared wavelength than the aluminum film, but the silver in the air will be rapid oxidation, color darkening, makes the film performance and firmness declined rapidly. Gold film has a good consistency with high reflectivity in the near, middle and far infrared range, can control the thermal radiation effectively, but it is relatively soft, easy bruising, and should be paid very close attention to clean, and the cost is very high.





Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
High Reflectivity Laser Mirror
800nm Highly Dispersive Ultrafast Mirrors

Laser Line Mirrors are used for beam-steering in demanding laser applications. Laser Line Mirrors are Optical Mirrors that have been designed for specific laser types or wavelengths.

Read More
High Reflective Dichroic Mirror
High Reflective Broadband Dichroic Mirrors

The dichroic mirror is a mirror with significantly different reflection or transmission properties at two different wavelengths, it’s characterized by almost complete transmission of light at certain wavelengths and almost complete reflection of light at other wavelengths. It can be widely used in Laser technology applications.

Read More
High Presion Double Concave Lenses
Coated Double-Concave Lenses

Double Concave Lenses are used in beam expansion, image reduction, or light projection applications. These lenses are also ideal for expanding the focal length of an optical system. Double Concave Lenses, which have two concave surfaces, are Optical Lenses with negative focal lengths. HG OPTRONICS offers Double Concave lenses with a variety of coating options.

Read More
Precision Broadband Laser Mirrors
Laser Grade Line Mirrors

Laser mirrors are fabricated with specialized coatings, which will offer high damage thresholds.

Read More
Ti:sapphire laser crystals
Ti:Sapphire Crystal Titanium Doped Sapphire

Ti:Sapphire crystal is the most widely used tunable solid-state laser material combining the supreme physical and optical properties with the extremely broad lasing range. Its lasing bandwidth can support pulses < 10fs making it the crystal of choice for femtosecond mode-locked oscillators and amplifiers. The absorption band of Ti:Sapphire centers at ~ 490 nm so it may be conveniently pumped by various laser sources such as argon ion lasers or frequency doubled Nd:YAG, Nd:YLF, Nd:YVO4 lasers at ~530nm. Laser designers are using Ti:sapphire to generate femtosecond pulses to create new industrial tools. A properly delivered femtosecond laser pulse interacts within the target leaving the surrounding area undisturbed. Newly developed femtosecond pulsed lasers micro-machine complex fine structures in glass, metal and other materials. Active waveguides can be written below the surface, integrating optical devices within the body of a substrate. Defects in photomasks can be repaired without disturbing neighbouring patterns. And it is now possible to achieve cellular resolution in vivo for medical diagnosis with femtosecond pulse lasers.

Read More
H-K9L Plano-Convex Lenses
UV Fused Silica Plano-Convex Lenses

A Plano-Convex lens causes light to focus to a point,it has a positive focal length,which is ideal for light collimation or for focusing applications utilizing monochromatic illumination, in a range of industries. HG OPTRONICS offers Plano-Convexlenses with a variety of coating options.

Read More
High purity Nd:YVO4 laser crystals
Nd:YVO4 Neodymium Doped Yttrium Orthovanadate laser crystals

Nd:YVO4 (Neodymium Doped Yttrium Orthovanadate) crystals is one of the most promising commercially available diode pumped solid state laser materials, especially, for low to middle power density. This is mainly for its higher absorption and emission features than Nd:YAG crystal. Pumped by laser diodes, Nd:YVO4 crystal has been incorporated with high NLO coefficient crystals ( LBO, BBO, or KTP) to frequency-shift the output from the near infrared to green, blue, or even UV. This incorporation to construct all solid state lasers is an ideal laser tool that can cover the most widespread applications of lasers, including machining, material processing, spectroscopy, wafer inspection, light displays, medical diagnostics, laser printing, and data storage, etc. It has been shown that Nd:YVO4 based diode pumped solid state lasers are rapidly occupying the markets traditionally dominated by water-cooled ion lasers and lamp-pumped lasers, especially when compact design and single-longitudinal-mode outputs are required.

Read More
HoYLF laser crystal
Ho:YLF crystal Holmium-doped Yttrium Lithium Fluoride

HGO grows Ho:YLF laser crystals using Czochralski technology. Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping. The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact