Products
Home /OPTICS /

Optical Mirrors

/Protected Gold Metallic Coated Mirror

Protected Gold Metallic Coated Mirror

HG Optronics.,INC. can provide Metal Coated Mirror,Dielectric Coated Mirror and Dichroic Mirror which are made of substrate such as BK7, Optical glass, Fused Silica, CaF2 and so on.


  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

1.1. What Metallic Coated types can HG OPTRONICS supply?

HG OPTRONICS mainly offers four coating types, including:

1) UV Enhanced Aluminum : Ravg > 85% from 200nm to 400nm

2) Protected Aluminum: Ravg > 88% from 400nm to 800nm

3) Protected Silver: Ravg > 90% from 400nm to 2500nm

4) Protected Gold: Ravg > 95% from 650nm to 2000nm


1.2. What are the features of Metallic coated mirror?

Metallic coated mirror have many key features below: Wide spectral range Not sensitive to the incidence angle and polarization state Low cost Non-durable Relatively low reflectance Low laser damage threshold


1.3. What  HG OPTRONICS can do for you?

Common Specifications:

Substrate Materials: N-BK7, Fused silica, Pyrex;Float glass

Dimensional tolerance:

+/-0.1mm

Surface quality:  

60-40

Parallelism:  

3’

Flatness:

λ/4 per 25mm@633nm

Bevel:

Protective One

surface:

Polished and Metallic coating

The other surface:

Fine ground


1.4. Note:

Aluminum is the most widely used metal reflection film, from near UV to near IR, have high reflectivity, and with low cost. Silver has higher reflectivity in the visible and near infrared wavelength than the aluminum film, but the silver in the air will be rapid oxidation, color darkening, makes the film performance and firmness declined rapidly. Gold film has a good consistency with high reflectivity in the near, middle and far infrared range, can control the thermal radiation effectively, but it is relatively soft, easy bruising, and should be paid very close attention to clean, and the cost is very high.





Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
High Reflectivity Laser Mirror
800nm Highly Dispersive Ultrafast Mirrors

Laser Line Mirrors are used for beam-steering in demanding laser applications. Laser Line Mirrors are Optical Mirrors that have been designed for specific laser types or wavelengths.

Read More
High Reflective Dichroic Mirror
High Reflective Broadband Dichroic Mirrors

The dichroic mirror is a mirror with significantly different reflection or transmission properties at two different wavelengths, it’s characterized by almost complete transmission of light at certain wavelengths and almost complete reflection of light at other wavelengths. It can be widely used in Laser technology applications.

Read More
YbYAG Crystals for DPSS lasers
Yb:YAG crystals Ytterbium Doped Yttrium Aluminum Garnet

YbYAG crystal is more suitable for diode-pumping than the traditional Nd-doped systems. It can be pumped at 0.94 μm laser output. Compared with the commonly used Nd:YAG crystal, Yb:YAG crystal has a much larger absorption bandwidth to reduce thermal management requirements for diode lasers, a longer upper-state lifetime, three to four times lower thermal loading per unit pump power. Yb:YAG crystal is expected to replace Nd:YAG crystal for high power diode-pumped lasers and other potential applications.

Read More
Commercial Grade Wedge Prisms
N-BK7 and Fused Silica Wedge Prisms

Wedge prism is an optical element with plane-inclined surfaces, usually the faces are inclined toward one another at a very small angles.  It diverts light toward its thicker portion.  Wedge prisms can be used as isolating components. Wedges may also be used to produce a small deviation which doesnt allow return to source.

Read More
Co2+:MgAl2O4  Cospinel Q-switch
Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel

Co2+:MgAl2O4 Cospinel is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 μm, in particular, for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths. Spinel is a hard, stable crystal that polishes well. Cobalt substitutes readily for magnesium in the Spinel host without the need for additional charge compensation ions. High absorption cross section (3.5×10-19 cm2) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10.

Read More
MgF2 crystal window
MgF2 crystal Magnesium Fluoride

MgF2 or Magnesium Fluoride is positive uni-axial crystal with a very high optical transmittance from the vacuum UV to IR. It is regularly used for optical elements where extreme ruggedness and durability is required. It also has a large resistance to mechanical and thermal shock, to optical radiation, and is chemically stable, making it a very useful materials for UV and IR optics.

Read More
HoYLF laser crystal
Ho:YLF crystal Holmium-doped Yttrium Lithium Fluoride

HGO grows Ho:YLF laser crystals using Czochralski technology. Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping. The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated.

Read More
Reflective Of Colour Glass Window
AR Coated Colour Glass Window

Color glass changed the spectral properties of optical radiation. They therefore allow scientific experiments and industrial applications where that change is necessary. You can combine color glass filters together to change the bandpass or to increase the attenuation. Color glass change the spectral properties of optical radiation. They therefore allow scientific experiments and industrial applications where that change is necessary. You can combine color glass filters together to change the band pass or to  increase the attenuation.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact