Products
Home /OPTICS /

Optical Mirrors

/Protected Gold Metallic Coated Mirror

Protected Gold Metallic Coated Mirror

HG Optronics.,INC. can provide Metal Coated Mirror,Dielectric Coated Mirror and Dichroic Mirror which are made of substrate such as BK7, Optical glass, Fused Silica, CaF2 and so on.


  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

1.1. What Metallic Coated types can HG OPTRONICS supply?

HG OPTRONICS mainly offers four coating types, including:

1) UV Enhanced Aluminum : Ravg > 85% from 200nm to 400nm

2) Protected Aluminum: Ravg > 88% from 400nm to 800nm

3) Protected Silver: Ravg > 90% from 400nm to 2500nm

4) Protected Gold: Ravg > 95% from 650nm to 2000nm


1.2. What are the features of Metallic coated mirror?

Metallic coated mirror have many key features below: Wide spectral range Not sensitive to the incidence angle and polarization state Low cost Non-durable Relatively low reflectance Low laser damage threshold


1.3. What  HG OPTRONICS can do for you?

Common Specifications:

Substrate Materials: N-BK7, Fused silica, Pyrex;Float glass

Dimensional tolerance:

+/-0.1mm

Surface quality:  

60-40

Parallelism:  

3’

Flatness:

λ/4 per 25mm@633nm

Bevel:

Protective One

surface:

Polished and Metallic coating

The other surface:

Fine ground


1.4. Note:

Aluminum is the most widely used metal reflection film, from near UV to near IR, have high reflectivity, and with low cost. Silver has higher reflectivity in the visible and near infrared wavelength than the aluminum film, but the silver in the air will be rapid oxidation, color darkening, makes the film performance and firmness declined rapidly. Gold film has a good consistency with high reflectivity in the near, middle and far infrared range, can control the thermal radiation effectively, but it is relatively soft, easy bruising, and should be paid very close attention to clean, and the cost is very high.





Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
High Reflectivity Laser Mirror
800nm Highly Dispersive Ultrafast Mirrors

Laser Line Mirrors are used for beam-steering in demanding laser applications. Laser Line Mirrors are Optical Mirrors that have been designed for specific laser types or wavelengths.

Read More
High Reflective Dichroic Mirror
High Reflective Broadband Dichroic Mirrors

The dichroic mirror is a mirror with significantly different reflection or transmission properties at two different wavelengths, it’s characterized by almost complete transmission of light at certain wavelengths and almost complete reflection of light at other wavelengths. It can be widely used in Laser technology applications.

Read More
China IR Windows Calcium Fluoride CaF2 Windows Suppliers
IR Windows Calcium Fluoride CaF2 Windows

Calcium Fluoride windows and lenses for UV and IR spectrum. Custom made CaF2 windows, CaF2 lenses and wedges according to customer's specifications. CaF2 windows up to 220mm diameter; CaF2 wedges, prisms and CaF2 mirrors; Excimer CaF2 optics, Raman grade CaF2 optics and etc.

Read More
Reflective Of Colour Glass Window
AR Coated Colour Glass Window

Color glass changed the spectral properties of optical radiation. They therefore allow scientific experiments and industrial applications where that change is necessary. You can combine color glass filters together to change the bandpass or to increase the attenuation. Color glass change the spectral properties of optical radiation. They therefore allow scientific experiments and industrial applications where that change is necessary. You can combine color glass filters together to change the band pass or to  increase the attenuation.

Read More
Ti:sapphire laser crystals
Ti:Sapphire Crystal Titanium Doped Sapphire

Ti:Sapphire crystal is the most widely used tunable solid-state laser material combining the supreme physical and optical properties with the extremely broad lasing range. Its lasing bandwidth can support pulses < 10fs making it the crystal of choice for femtosecond mode-locked oscillators and amplifiers. The absorption band of Ti:Sapphire centers at ~ 490 nm so it may be conveniently pumped by various laser sources such as argon ion lasers or frequency doubled Nd:YAG, Nd:YLF, Nd:YVO4 lasers at ~530nm. Laser designers are using Ti:sapphire to generate femtosecond pulses to create new industrial tools. A properly delivered femtosecond laser pulse interacts within the target leaving the surrounding area undisturbed. Newly developed femtosecond pulsed lasers micro-machine complex fine structures in glass, metal and other materials. Active waveguides can be written below the surface, integrating optical devices within the body of a substrate. Defects in photomasks can be repaired without disturbing neighbouring patterns. And it is now possible to achieve cellular resolution in vivo for medical diagnosis with femtosecond pulse lasers.

Read More
Custom Plano Concave Cylindrical Lens
Plano-Concave Rectangular Cylindrical Lenses

Plano-concave rectangular cylindrical lenses provide uni- axial negative imaging for anamorphic beam expansion and a wide range of applications.These lenses may also be used as mirror blanks if a concave cylindrical surface mirror is required.

Read More
Optical Dove Prism With Coating
BK7 And Fused Silica Glass Dove Prisms

Invented by H.W. Dove, Dove Prisms are also known Reversion prisms.  When the prism is rotated about its length axis, the image viewed through the prism rotates at twice the prism rotation rate.  This is an unusual and sometimes useful property for special applications. Entry and exit faces are anti-reflection coated.

Read More
Silicon Windows

Silicon is used as an optical window primarily in the 3 to 5 micron band and as a subsrate for production of optical filters and windows. Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns. To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact