Products
Home /CRYSTALS /

Passive Q-switch

/Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    3-4weeks
Share To : f t y b l ins
  • Product Detail

Descriptions:


Cr4+:YAG (Y3Al5O12) Chromium Doped Yttrium AIuminum Garnet crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm.



Main applications:

1) Passively Q-switched lasers for laser rangefinders, LIDAR, and LIBS systems

2) Laser systems where short pulses are required


Advantages:

1) High chemica stability and reliability

2) Easy to operate

3) Long lifetime and good thermal conductivity


Basic properties of CrYAG

Chemical Formula

Cr4+:Y3Al5O12

Crystal Structure

Cubic

Mohs Scale of Mineral Hardness

8.5

Melting Point

1970 °C

Density, g/cm3

4.55

Coefficient of Thermal Conductivity @ 25°C, W x cm-1x °K-1

0.14

Coefficient of Thermal Expansion

8.2 x 10-6/ <100>

Young's Modulus

7.7x 106<100>

Thermal Shock Resistance

790 Wm-1


HGO offers CrYAG specifications:

Orientation:

<100> or <110>

Initial absorption coefficient

0.1~8.5cm-1@1064nm

Initial transmission

3%~98%

Wavefront Distortion:

λ/8per inch @ 632.8 nm

Dimension Tolerances

rods with diameter: +0.0/-0.05 mm , Length: ±0.1 mm

Surface Quality:

20/10 Scratch/Dig MIL-O-1380A

Parallelism:

< 10

Perpendicularity:

< 10

Clear Aperture:

> 90%

Surface Flatness:

< λ/10 @ 632.8 nm

Chamfer:

< 0.1 mm @ 45deg.

Size

Upon customer request

Coating

AR/HR/PR coating upon customer’s request

Damage Threshold

750MW/CM2 at 1064nm, TEM00, 10ns, 10Hz

Quality Warranty Period

One year under proper use


Why Choose HGO ?

HG OPTRONICS.,INC. supplies very high quality of Cr4+:YAG passive Q-switch crystals Chromium Doped Yttrium AIuminum Garnet. The use of high quality starting materials for crystal growth, boule interferometry, and precise measurement of initial transmission and absorption using transmission spectroscopy and ZYGO measurements, assures that each crystal will comply with customer’s specification and perform well in laser system.

Tolerance of initial transmission can be well controlled in as high precision as 0.5% which could be very essential to some delicate laser systems.

Besides, based on HGO’s advanced bonding technology, high quality of diffusion bonding between Nd3+, Yb3+ or other ions doped YAG host laser crystals and CrYAG are available from stock or for customization.

What is more,HGO have mature solutions for different laser parameters especially in microchips solution and our engineer are very glad to discuss and provide solutions for customers.

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Co2+:MgAl2O4  Cospinel Q-switch
Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel

Co2+:MgAl2O4 Cospinel is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 μm, in particular, for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths. Spinel is a hard, stable crystal that polishes well. Cobalt substitutes readily for magnesium in the Spinel host without the need for additional charge compensation ions. High absorption cross section (3.5×10-19 cm2) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10.

Read More
Large Size Plano Concave Cylindrical Lens
Plano-Concave Cylindrical Lenses

A cylindrical lens is a lens that focuses light on a line instead of a point, like a spherical lens. The curved face or faces of a cylindrical lens are sections of a cylinder, and focus the image passing through it into a line parallel to the intersection of the surface of the lens and a plane tangent to it. The lens compresses the image in the direction perpendicular to this line and leaves it unaltered in the direction parallel to it (in the tangent plane). In a light sheet microscope, a cylindrical lens is placed in front of the illumination objective to create the light sheet used for imaging. Cylindrical lenses focus or expand light in one axis only. They can be used to focus light into a thin line in optical metrology, laser scanning, spectroscopic, laser diode, acousto-optic, and optical processor applications. They can also be used to expand the output of a laser diode into a symmetrical beam. Cylindrical lenses are widely used in telecom applications like WSS, 40G/100G modules and laser applications like pump laser modules

Read More
Quartz Windows Fused Silica Window
UV Fused Silica High-Precision Window

Fused silica window, with low thermal expansion,  providing stability and resistance to thermal shock over large temperature excursions, wide thermal operating range and high laser damage threshold, is a better choice for transmission from UV to IR.

Read More
UV Fused Silica Corner Cube Retroreflectors
UV Fused Silica Corner Cube Retroreflectors Prisms

Corner Cube Prism also called Retroreflector.It has three mutually perpendicular surfaces and a hypotenuse face. Light entering through the hypotenuse is reflected by each of the three surfaces in turn and will emerge through the hypotenuse face parallel to the entering beam regardless of the orientation of the incident beam. For its special performance, it is often used to the distance measurement, optical signal process and laser.

Read More
Diffusion Bonded Crystals Modules
Diffusion Bonded Crystals with High Damage Threshold

Diffusion bonded crystals consist of one laser crystal and one or two undoped material. They are combined by optical contact method and further bonded under high temperature. Diffusion Bonded Crystal helps to decrease thermal lens effect considerably of laser crystals, provides integral components to make compact lasers. HGO are able to supply various standard assembly and special customized bonding crystals.These diffusion bonded composite crystals have different wedge structures, Brewster angles, etc. It is used to effectively reduce the thermal effect of solid-state high-power lasers.

Read More
IR Windows Silicon Windows
Silicon Windows

Silicon is used as an optical window primarily in the 3 to 5 micron band and as a subsrate for production of optical filters and windows. Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns. To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.

Read More
H-K9L Plano-Convex Lenses
UV Fused Silica Plano-Convex Lenses

A Plano-Convex lens causes light to focus to a point,it has a positive focal length,which is ideal for light collimation or for focusing applications utilizing monochromatic illumination, in a range of industries. HG OPTRONICS offers Plano-Convexlenses with a variety of coating options.

Read More
Pure YAG window crystal
YAG window crystals Yttrium Aluminum Garnet

Pure YAG Yttrium Aluminum Garnet is a new substrate and window material that can be used for both UV and IR optics. It is particularly useful for high-temperature and high-energy applications. The mechanical and chemical stability of YAG is comparable to sapphire crystal, but YAG is unique with no birefringence which is extremely important for some optical applications.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact