Products
Home /CRYSTALS /

Passive Q-switch

/Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    3-4weeks
Share To : f t y b l ins
  • Product Detail

Descriptions:

 

Cr4+:YAG (Y3Al5O12) Chromium Doped Yttrium AIuminum Garnet crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm.

 

 

Main applications:

1) Passively Q-switched lasers for laser rangefinders, LIDAR, and LIBS systems

2) Laser systems where short pulses are required

 

Advantages:

1) High chemica stability and reliability

2) Easy to operate

3) Long lifetime and good thermal conductivity

 

Basic properties of CrYAG

Chemical Formula

Cr4+:Y3Al5O12

Crystal Structure

Cubic

Mohs Scale of Mineral Hardness

8.5

Melting Point

1970 °C

Density, g/cm3

4.55

Coefficient of Thermal Conductivity @ 25°C, W x cm-1x °K-1

0.14

Coefficient of Thermal Expansion

8.2 x 10-6/ <100>

Young's Modulus

7.7x 106<100>

Thermal Shock Resistance

790 Wm-1

 

 

HGO offers CrYAG specifications:

Orientation:

<100> or <110>

Initial absorption coefficient

0.1~8.5cm-1@1064nm

Initial transmission

3%~98%

Wavefront Distortion:

λ/8per inch @ 632.8 nm

Dimension Tolerances

rods with diameter: +0.0/-0.05 mm , Length: ±0.1 mm

Surface Quality:

20/10 Scratch/Dig MIL-O-1380A

Parallelism:

< 10

Perpendicularity:

< 10

Clear Aperture:

> 90%

Surface Flatness:

< λ/10 @ 632.8 nm

Chamfer:

< 0.1 mm @ 45deg.

Size

Upon customer request

Coating

AR/HR/PR coating upon customer’s request

Damage Threshold

750MW/CM2 at 1064nm, TEM00, 10ns, 10Hz

Quality Warranty Period

One year under proper use

 

 

Why Choose HGO ?

HG OPTRONICS.,INC. supplies very high quality of Cr4+:YAG passive Q-switch crystals Chromium Doped Yttrium AIuminum Garnet. The use of high quality starting materials for crystal growth, boule interferometry, and precise measurement of initial transmission and absorption using transmission spectroscopy and ZYGO measurements, assures that each crystal will comply with customer’s specification and perform well in laser system.

Tolerance of initial transmission can be well controlled in as high precision as 0.5% which could be very essential to some delicate laser systems.

Besides, based on HGO’s advanced bonding technology, high quality of diffusion bonding between Nd3+, Yb3+ or other ions doped YAG host laser crystals and CrYAG are available from stock or for customization.

What is more,HGO have mature solutions for different laser parameters especially in microchips solution and our engineer are very glad to discuss and provide solutions for customers.

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Co2+:MgAl2O4  Cospinel Q-switch
Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel

Co2+:MgAl2O4 Cospinel is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 μm, in particular, for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths. Spinel is a hard, stable crystal that polishes well. Cobalt substitutes readily for magnesium in the Spinel host without the need for additional charge compensation ions. High absorption cross section (3.5×10-19 cm2) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10.

Read More
UV Fused Silica Corner Cube Retroreflectors Prisms

Corner Cube Prism also called Retroreflector.It has three mutually perpendicular surfaces and a hypotenuse face. Light entering through the hypotenuse is reflected by each of the three surfaces in turn and will emerge through the hypotenuse face parallel to the entering beam regardless of the orientation of the incident beam. For its special performance, it is often used to the distance measurement, optical signal process and laser.

Read More
Ti:sapphire laser crystals
Ti:Sapphire Crystal Titanium Doped Sapphire

Ti:Sapphire crystal is the most widely used tunable solid-state laser material combining the supreme physical and optical properties with the extremely broad lasing range. Its lasing bandwidth can support pulses < 10fs making it the crystal of choice for femtosecond mode-locked oscillators and amplifiers. The absorption band of Ti:Sapphire centers at ~ 490 nm so it may be conveniently pumped by various laser sources such as argon ion lasers or frequency doubled Nd:YAG, Nd:YLF, Nd:YVO4 lasers at ~530nm. Laser designers are using Ti:sapphire to generate femtosecond pulses to create new industrial tools. A properly delivered femtosecond laser pulse interacts within the target leaving the surrounding area undisturbed. Newly developed femtosecond pulsed lasers micro-machine complex fine structures in glass, metal and other materials. Active waveguides can be written below the surface, integrating optical devices within the body of a substrate. Defects in photomasks can be repaired without disturbing neighbouring patterns. And it is now possible to achieve cellular resolution in vivo for medical diagnosis with femtosecond pulse lasers.

Read More
UV Fused Silica Plano-Convex Lenses

A Plano-Convex lens causes light to focus to a point,it has a positive focal length,which is ideal for light collimation or for focusing applications utilizing monochromatic illumination, in a range of industries. HG OPTRONICS offers Plano-Convexlenses with a variety of coating options.

Read More
Optical Glass Domes
Optical Domes

Optical domes are lenses with two concentric spherical surfaces. Sometimes they are being referred to as bent plan parallel plates. Consequently it is customary to define parallelism between two surfaces as the maximum thickness variation between the two surfaces.

Read More
KDP & DKDP/KD*P Crystal
KDP & DKDP Crystal Potassium Dihydrogen Phosphate and Potassium Dideuterium Phosphate

KDP Potassium Dihydrogen Phosphate and KD*P or DKDP Potassium Dideuterium Phosphate are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling and quadrupling of a Nd:YAG laser under the room temperature. In addition, they are also excellent electro-optic crystals with high electro-optic coefficients, widely used as electro-optical modulators, such as Q-switches, Pockels Cells, etc.

Read More
C-Lens
Laser Optics

C-lens are specifically designed for fiber optics applications such as collimator, isolator, switch, collimator array and laser assembly. Compare to other gradient index lens, C-lens have several advantages including low cost, low insertion loss in long working distance, and wide working distance range. With our experienced optical design engineers, HG OPTRONICS can also provide custom designed C-lens per customer's requirement.

Read More
YbYAG Crystals for DPSS lasers
Yb:YAG crystals Ytterbium Doped Yttrium Aluminum Garnet

YbYAG crystal is more suitable for diode-pumping than the traditional Nd-doped systems. It can be pumped at 0.94 μm laser output. Compared with the commonly used Nd:YAG crystal, Yb:YAG crystal has a much larger absorption bandwidth to reduce thermal management requirements for diode lasers, a longer upper-state lifetime, three to four times lower thermal loading per unit pump power. Yb:YAG crystal is expected to replace Nd:YAG crystal for high power diode-pumped lasers and other potential applications.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact